PyAEDT EDB-API cheat sheet

Version: 0.6.78 (stable)

\nsys

Launch EDB-API using PyAEDT

EDB manager manages the AEDB database. An AEDB
database is a folder that contains the database representing
any part of a PCB. It can be opened and edited using the Edb
class.

List all nets available in AEDB file
edb.nets.netlist

Delete a net
edb.nets["net_name"].delete()

Simulation configuration

These classes are the containers of simulation configuration
constructors for the EDB.

Launch an instance

import pyaedt

edb = pyaedt.Edb(edbversion="2023.1", edbpath=
aedb_path)

edb.save_edb() # Save the edb file

edb.close_edb() # exits the edb file

Vias and padstacks
These containers are the API references for padstack manage-
ment. The main padstack object is called directly from the
main application using the property padstacks.

Stackup and Layers

These classes are the containers of the layer and stackup man-
ager of the EDB API.

Create a via
edb.padstacks.place(position =
Get pad parameters
edb.padstacks.get_pad_parameters()

[5e-3, 5e-3], "MyVia")

Add a stackup layer
edb.stakup.add_layer ("Name")

Get the names of the all layers
edb.stackup.stackup_layers.keys()

Sources and excitation

These classes are the containers of sources methods of the
EDB for both HFSS and Siwave.

Modeler and primitives

These classes are the containers of primitives and all relative
methods. Primitives are planes, lines, rectangles, and circles.

Create a polygon by defining points
points = [[0.0, 1e-3], [0.0, 10e-3],
[100e-3, 1e-3], [0.0, le-3]]
edb.modeler.create_polygon_from_points(points,

layer_name = "Name')

[100e-3, 10e-3],

Get the dictionary of EDB excitations

edb.excitations

Create a differential port

edb.hfss.create_differential_wave_port(
positive_primitive_id = trace_p[0].1d,
positive_points_on_edge = pl_points,
negative_primitive_id = trace_n[0].1d,
negative_points_on_edge = nl_points, name = "
wave_port_1")

Specify AC settings
sim_setup.ac_settings.start_freq = "100Hz"
sim_setup.ac_settings.stop_freq = "6GHz"
sim_setup.ac_settings.step_freq = "10MHz"

Run batch solve
sim_setup=edbapp.new_simulation_configuration()
sim_setup.solver_type sim_setup.SOLVER_TYPE.SiwaveSYZ
sim_setup.batch_solve_settings.
cutout_subdesign_expansion = 0.01
sim_setup.batch_solve_settings.do_cutout_subdesign =
True
sim_setup.use_default_cutout =
sim_setup.batch_solve_settings.
signal_net_list
sim_setup.batch_solve_settings.
component_Tlist
sim_setup.batch_solve_settings.
power_nets_Tlist

False
signal_nets =

components =
power_nets =

Save configuration file
sim_setup.export_json(os.path.join(project_path, "

configuration.json"))
edbapp.build_simulation_project(sim_setup)

Components

The components class contains API references for net manage-
ment. The main component object is called directly from the
main application using property components.

Simulation setup

These classes are the containers of setup classes in EDB for
both HFSS and Siwave.

Get the list of components
edb.components.components.keys ()

Get the net information of a component
edb.components.get_component_net_connection_info("Q13N

|l)

Set up HFSS simulation

setup = edb.create_hfss_setup(name =

setup.set_solution_single_frequency ()

setup.hfss_solver_settings.enhanced_low_freq_accuracy
= True

setup.hfss_solver_settings.order_basis = "first"

setup.adaptive_settings.add_adaptive_frequency_data("5
GHz",8,"0.01")

"my_setup")

SiWave Manager

Siwave is a specialized tool for power integrity, signal integrity,
and EMI analysis of IC packages and PCBs. This tool solves
power delivery systems and high-speed channels in electronic
devices. It can be accessed from PyAEDT in Windows only. All
setups can be implemented through the EDB API.

Nets

The nets class contains API references for net management.
The main net object is called directly from the main applica-
tion using the property nets.

Set up SiWave simulation

setup = edb.siwave.add_siwave_dc_analysis(name = "
myDCIR_4")

setup.use_dc_custom_settings =

setup.dc_slider_position = 0

setup.add_source_terminal_to_ground("v1i", 1)

solve_edb = edb.solve_siwave()

True

from pyaedt.siwave import Siwave

this call returns the Edb class initialized on 2023
R1

siwave = Siwave(specified_version="2023.1")

siwave.open_project("pyproject.siw")

siwave.export_element_data("mydata.txt")

siwave.close_project()

Getting started with AEDT / Ansys Innovation Courses

References from PyAEDT documentation

- [EDB API

https://aedt.docs.pyansys.com/version/stable/EDBAPI/index.html

